8 research outputs found

    QCD thermodynamics with continuum extrapolated Wilson fermions II

    Get PDF
    We continue our investigation of 2+1 flavor QCD thermodynamics using dynamical Wilson fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and 285 MeV, are added to our previous work at 545 MeV. The simulations were performed at 3 or 4 lattice spacings at each pion mass. The renormalized chiral condensate, strange quark number susceptibility and Polyakov loop is obtained as a function of the temperature and we observe a decrease in the light chiral pseudo-critical temperature as the pion mass is lowered while the pseudo-critical temperature associated with the strange quark number susceptibility or the Polyakov loop is only mildly sensitive to the pion mass. These findings are in agreement with previous continuum results obtained in the staggered formulation.Comment: 19 pages, 13 figures, published versio

    Landslide mapping and monitoring by using radar and optical remote sensing: examples from the EC-FP7 project SAFER

    Get PDF
    This paper focuses on the Landslide Thematic services of the EU-funded FP7-SPACE project SAFER (Services and Applications For Emergency Response) for inventory mapping, monitoring and rapid mapping by using Earth Observation (EO). We exploited satellite Interferometric Synthetic Aperture Radar (InSAR) and Object-Based Image Analysis (OBIA), and discuss example applications in South Tyrol and Abruzzo (Italy), Lower Austria (Austria), Lubietova (Slovakia) and the Kaohsiung County (Taiwan). These case studies showcase the significance of radar and optical EO data, InSAR and OBIA methods for landslide mapping and monitoring in different geological environments and during all phases of emergency management: mitigation, preparedness, crisis and recovery

    Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping

    No full text
    Remote sensing and geographic information systems (GIS) are widely used for landslide susceptibility mapping (LSM) to support planning authorities to plan, prepare and mitigate the consequences of future hazards. In this study, we compared the traditional per-pixel models of data-driven frequency ratio (FR) and expert-based multi-criteria assessment, i.e. analytical hierarchical process (AHP), with an object-based model that uses homogenous regions (‘geon’). The geon approach allows for transforming continuous spatial information into discrete objects. We used ten landslide conditioning factors for the four models to produce landslide susceptibility maps: elevation, slope angle, slope aspect, rainfall, lithology, geology, land use, distance to roads, distance to drainage, and distance to faults. Existing national landslide inventory data were divided into training (70%) and validation data (30%). The spatial correlation between landslide locations and the conditioning factors were identified using GIS-based statistical models. Receiver operating characteristics (ROC) and the relative landslide density index (R-index) were used to validate the resulting susceptibility maps. The area under the curve (AUC) was used to obtain the following values from ROC for the per-pixel based FR approach (0.894) and the AHP (0.886) compared with the object-based geon FR approach (0.905) and the geon AHP (0.896). The object-based geon aggregation yielded a higher accuracy than both per-pixel based weightings (FR and AHP). We proved that the object-based geon approach creates meaningful regional units that are beneficial for regional planning and hazard mitigation

    Shape of collective flow in highly central Au(150 A MeV)+Au collisions

    Get PDF
    Using the FOPI facility at GSI, charged particles (1 ≀Z≀6) produced in the Au(150 A MeV)+Au reaction have been measured at laboratory angles 1.20 < Θlab < 300. Highly central collisions have been selected with two criteria, both dealing with the longitudinal and transverse degrees of freedom of the reaction. The relevance of this selection method is supported by QMD calculations which indicate that such criteria are able to select mean impact parameters less than 2 fm. Bias effects introduced by the criteria have been evaluated. The centre-of-mass polar angle distributions of low energy clusters emitted in these central collisions, have been extracted: the intensity ratio deduced for a transverse to longitudinal emission is found to be R= 1.4 −0.4 +0.2 . Model comparisons using QMD are presented. The value of R appears to depend sensitively on the nucleon-nucleon cross section, σnn. Within this model, a value of σ=25+ - 5 mb is derived
    corecore